Mannose-binding lectin augments the uptake of lipid A, Staphylococcus aureus, and Escherichia coli by Kupffer cells through increased cell surface expression of scavenger receptor A.
نویسندگان
چکیده
We investigated roles of scavenger receptor A (SR-A) and mannose-binding lectin (MBL) in the uptake of endotoxin and bacteria by Kupffer cells. When [3H]lipid A was injected into retro-orbital plexus of mice, significantly less accumulation of lipid A in the liver was observed in SR-A-deficient mice and wild-type mice coinjected with fucoidan or acetylated low-density lipoprotein, which are known ligands for SR-A. Isolated Kupffer cells were able to take up [3H]lipid A in a time-dependent manner. The amount of lipid A associated with nonadherent Kupffer cells derived from SR-A-deficient mice was reduced by approximately 80% when compared with wild-type cells, indicating an important role of SR-A in endotoxin uptake by Kupffer cells. The lipid A uptake by Kupffer cells was significantly enhanced in the presence of rMBL. Coincubation of fucoidan with [3H]lipid A significantly inhibited the basal and the MBL-stimulated uptake of lipid A by Kupffer cells. Preincubation of MBL with Kupffer cells also increased the uptake of lipid A. These results indicate that MBL augments the SR-A-mediated uptake of lipid A by Kupffer cells. Consistently, the exposure of MBL to Kupffer cells increased cell surface SR-A expression. The phagocytosis of Staphylococcus aureus and Escherichia coli by Kupffer cells was also enhanced by preincubation of MBL with the cells. In addition, MBL bound to lipid A, LPS, and S. aureus, and precipitated S. aureus. This study demonstrates important roles of SR-A and MBL in the uptake of endotoxin and bacteria by Kupffer cells.
منابع مشابه
Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli
Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...
متن کاملLOX-1 supports adhesion of Gram-positive and Gram-negative bacteria.
Adhesion of bacteria to vascular endothelial cells as well as mucosal cells and epithelial cells appears to be one of the initial steps in the process of bacterial infection, including infective endocarditis. We examined whether lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1), a member of scavenger receptor family molecules with C-type lectin-like structure, can support adhesion...
متن کاملOptimization condition in labeling of Ofloxacin with 99mTc and its biological evaluation in Staphylococcus aureus and Escherichia coli for infection imaging
Introduction: The use of radiopharmaceuticals is a powerful tool in the management of patients with infectious or inflammatory diseases in nuclear medicine. In this study ofloxacin as a second-generation fluoroquinolone is used to design a desired infection imaging agent after labeling with 99mTc via direct labeling. Methods: Ofloxacin was radiolabeled with 99mTc using di...
متن کاملCloning and evaluation of gene expression and purification of gene encoding recombinant protein containing binding subunit of coli surface antigens CS1 and CS2 from Enterotoxigenic Escherichia coli
Background & Objective: Enterotoxigenic Escherichia coli (ETEC) is a major causative agent of diarrhea. Enterotoxins and the colonization factors (CFs) are major virulence factors in ETEC infections. The bacterium binds to the intestinal epithelial cell surface through colonization factors and produces enterotoxins that cause excessive fluid and electrolyte secretion in the lumen of the intesti...
متن کاملEvaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli 0157H7, Staphylococcus Aureus and Staphylococcus Epidermis
Background: The radiation emitted from electromagnetic fields (EMF) can cause biological effects on prokaryotic and eukaryotic cells, including non-thermal effects. Objective: The present study evaluated the non-thermal effects of wireless fidelity (Wi-Fi) operating at 2.4 GHz part of non-ionizing EMF on different pathogenic bacterial strains (Escherichia coli 0157H7, Staphylococcus aureu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 177 8 شماره
صفحات -
تاریخ انتشار 2006